Algebraic topology for computer vision
نویسندگان
چکیده
© Algebraic topology for computer vision Daniel Freedman, Chao Chen HP Laboratories HPL-2009-375 algebraic topology, persistent homology, computer vision, image processing Algebraic topology is generally considered one of the purest subfields of mathematics. However, over the last decade two interesting new lines of research have emerged, one focusing on algorithms for algebraic topology, and the other on applications of algebraic topology in engineering and science. Amongst the new areas in which the techniques have been applied are computer vision and image processing. In this paper, we survey the results of these endeavours. Because algebraic topology is an area of mathematics with which most computer vision practitioners have no experience, we review the machinery behind the theories of homology and persistent homology; our review emphasizes intuitive explanations. In terms of applications to computer vision, we focus on four illustrative problems: shape signatures, natural image statistics, image denoising, and segmentation. Our hope is that this review will stimulate interest on the part of computer vision researchers to both use and extend the tools of this new field. External Posting Date: December 17, 2009 [Fulltext] Approved for External Publication Internal Posting Date: December 17, 2009 [Fulltext] Copyright 2009 Hewlett-Packard Development Company, L.P. ALGEBRAIC TOPOLOGY FOR COMPUTER VISION DANIEL FREEDMAN∗ AND CHAO CHEN† Abstract. Algebraic topology is generally considered one of the purest subfields of mathematics. However, over the last decade two interesting new lines of research have emerged, one focusing on algorithms for algebraic topology, and the other on applications of algebraic topology in engineering and science. Amongst the new areas in which the techniques have been applied are computer vision and image processing. In this paper, we survey the results of these endeavours. Because algebraic topology is an area of mathematics with which most computer vision practitioners have no experience, we review the machinery behind the theories of homology and persistent homology; our review emphasizes intuitive explanations. In terms of applications to computer vision, we focus on four illustrative problems: shape signatures, natural image statistics, image denoising, and segmentation. Our hope is that this review will stimulate interest on the part of computer vision researchers to both use and extend the tools of this new field. Algebraic topology is generally considered one of the purest subfields of mathematics. However, over the last decade two interesting new lines of research have emerged, one focusing on algorithms for algebraic topology, and the other on applications of algebraic topology in engineering and science. Amongst the new areas in which the techniques have been applied are computer vision and image processing. In this paper, we survey the results of these endeavours. Because algebraic topology is an area of mathematics with which most computer vision practitioners have no experience, we review the machinery behind the theories of homology and persistent homology; our review emphasizes intuitive explanations. In terms of applications to computer vision, we focus on four illustrative problems: shape signatures, natural image statistics, image denoising, and segmentation. Our hope is that this review will stimulate interest on the part of computer vision researchers to both use and extend the tools of this new field.
منابع مشابه
Categorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS
Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category TopSys of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...
متن کاملAN INDUCTIVE FUZZY DIMENSION
Using a system of axioms among with a modified definition of boundary on the basis of the intuitionistic fuzzy sets, we formulate an inductive structure for the dimension of fuzzy spaces which has been defined by Coker. This new definition of boundary allows to characterize an intuitionistic fuzzy clopen set as a set with zero boundary. Also, some critical properties and applications are establ...
متن کاملBarcodes: the Persistent Topology of Data
This article surveys recent work of Carlsson and collaborators on applications of computational algebraic topology to problems of feature detection and shape recognition in high-dimensional data. The primary mathematical tool considered is a homology theory for point-cloud data sets—persistent homology—and a novel representation of this algebraic characterization— barcodes. We sketch an applica...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009